
Централизованное тестирование по физике, 2018

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида (1,4 ± 0,2) Н записывайте следующим образом: 1,40,2.

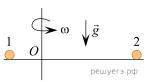
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. На рисунке представлен график зависимости координаты велосипедиста от времени его движения. Начальная координата x_0 велосипедиста равна:

1) 14 м

2) 18 м

3) 20 M 4) 24 M 5) 26 M


2. В таблице представлено изменение с течением времени координаты автомобиля, движущегося с постоянным ускорением вдоль оси Ox.

Момент времени <i>t</i> , с	0,0	2,0	4,0
Координата x , м	-3,0	0,0	9,0

Проекция ускорения a_x автомобиля на ось Ox равна:

1) 1,0 m/c^2 2) 1,5 m/c^2 3) 2,0 m/c^2 4) 2,5 m/c^2 5) 3,0 m/c^2

3. Тонкий стержень с закрепленными на его концах небольшими бусинками 1 и 2 равномерно вращается в горизонтальной плоскости вокруг вертикальной оси, проходящей через точку O(см. рис.). Если первая бусинка находится на расстоянии $r_1 =$ 25 см от оси вращения, а модули линейной скорости второй и первой бусинок отличаются в k = 3.0 раза, то длина l стержня равна:

1) 0.50 м

2) 0.75 M 3) 1.0 M

4) 1.3 m

5) 1.5 M

4. Деревянный шар ($\rho_1 = 4.0 \cdot 10^2 \, \text{кг/м}^3$) всплывает в воде ($\rho_2 = 1.0 \cdot 10^3 \, \text{кг/м}^3$) с постоянной скоростью. Отношение $\frac{F_{\rm c}}{F_{\rm c}}$ модулей силы сопротивления воды и силы тяжести, действующих на шар, равно:

2) 1.5 3) 2.8

4) 3.5

5) 4.0

5. Цепь массой m = 2,0 кг и длиной l = 1,0 м, лежащую на гладком горизонтальном столе, поднимают за один конец. Минимальная работа A_{min} по подъему цепи, при котором она перестанет оказывать давление на стол. равна:

1) 10 Дж

2) 20 Дж

3) 30 Дж

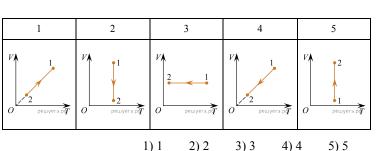
4) 40 Дж

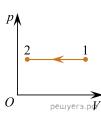
5) 50 Дж

6. Вдоль резинового шнура распространяется волна со скоростью, модуль которой V = 3.0 м/с. Если частота колебаний частиц шнура $v = 2.0~\Gamma$ ц, то разность фаз $\Delta \phi$ колебаний частиц, для которых положения равновесия находятся на расстоянии l = 75 см, равна:

1) $\pi/2$ рад

π рад

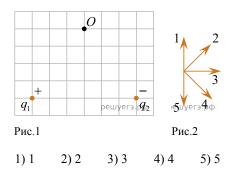

3) $3\pi/2$ pag 4) 2π pag


5) 4π pag

7. В герметично закрытом сосуде находится идеальный газ, давление которого $p = 1,0\cdot 10^5$ Па. Если средняя квадратичная скорость поступательного движения молекул газа $<v_{vo}>=500$ м/ с,то плотность р газа равна:

1) 0.40 kg/m^3 2) 0.60 kg/m^3 3) 0.75 kg/m^3 4) 0.83 kg/m^3 5) 1.2 kg/m^3

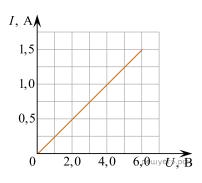
8. На рисунке представлен график зависимости давления идеального газа определенной массы от объема. График этого процесса в координатах (V, T) представлен на рисунке, обозначенном цифрой:



9. В герметично закрытом сосуде находится гелий, количество вещества которого v = 10 моль. Если за некоторый промежуток времени температура газа изменилась от t_1 = 17 °C до t_2 = 137 °C, то изменение внутренней энергии гелия равно:

- 1) -15 кДж
- 2) -10 кДж
- 3) 6,6 кДж
- 4) 10 кДж
- 5) 15 кДж

10. Точечные заряды, модули которых $|q_1| = |q_2|$ расположены на одной прямой (рис. 1). Направление напряженности E результирующего электростатического поля, созданного этими зарядами в точке O, на рисунке 2 обозначено цифрой:


11. Электрическая емкость плоского воздушного конденсатора C=12 пФ. Если площадь каждой обкладки уменьшить в $\alpha=1,5$ раза, то электрическая емкость конденсатора:

- 1) уменьшится на 4,0 п Φ
- 2) уменьшится на 8,0 пФ
- 3) увеличится на 4,0 пФ

- 4) увеличится на 6,0 пФ
- 5) увеличится на 8,0 пФ

РЕШУ ЦТ и ЦЭ — физика

12. На рисунке представлен график зависимости силы тока, проходящего через нихромовый ($\rho = 1,0 \cdot 10^{-6}$ Ом·м) проводник, от напряжения на нем. Если площадь поперечного сечения проводника S = 2,0 мм², то его длина l равна:

1) 1,0 м

2) 2,0 м

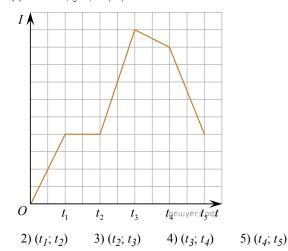
3) 3,0 м

4) 5,0 м

5) 8,0 м

13. Прямолинейный проводник массы m=20 г и длины l=50 см, расположенный горизонтально в однородном магнитном поле, находится в равновесии (см. рис.). Если сила тока, проходящего по проводнику, I=4,0 A, то модуль индукции B магнитного поля равен:

1) 0,10 Tл


1) $(0; t_1)$

2) 0,40 Тл

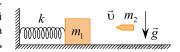
3) 0,50 Тл 4) 1,0 Тл

5) 1,6 Тл

14. На рисунке представлен график зависимости силы тока, проходящего по замкнутому проводящему контуру с постоянной индуктивностью, от времени. Интервал времени, в пределах которого значение модуля ЭДС самоиндукции $|\mathscr{E}|$ максимально:

- 15. Расстояние от мнимого изображения действительного предмета, полученного с помощью тонкой собирающей линзы, до ее главной плоскости в $\alpha = 3$ раза больше фокусного расстояния. Линейное (поперечное) увеличение Г линзы равно:
 - 2) 3 3) 4 1) 2
- **16.** Дифракционную решетку с периодом $d = 2.0 \cdot 10^{-5}$ м освещают монохроматическим светом, падающим по нормали. Если расстояние между главными максимумами первого порядка на экране, расположенном на расстоянии L=1.6 м от решетки, l=80 мм, то длина световой волны λ равна:
 - 1) 0.42 mkm
- 2) 0.46 мкм
- 3) 0.50 мкм
- 4) 0.54 mkm
- 5) 0.62 MKM
- 17. Фотоэлектроны, выбиваемые с поверхности металла светом с длиной волны $\lambda = 330$ нм, полностью задерживаются, когда разность потенциалов между электродами фотоэлемента U_2 = 1,76 В. Длина волны λ_{ν} , соответствующая красной границе фотоэффекта, равна:
- 1) 385 HM 2) 470 HM 3) 619 HM
- 4) 650 нм
- 5) 774 HM

18. Заряд $q = 4.32 \cdot 10^{-18}$ Кл имеет ядро атома:


54,938	55,847	58,933	58,70	63,546 65,39		69,72	72,59	
25 <i>Mn</i>	26 <i>Fe</i>	27 <i>Co</i>	28 <i>Ni</i>	29 <i>Cu</i>	30 <i>Zn</i>	31 <i>Ga</i>	32 <i>Ge</i>	
марганец	железо	кобальт	никель	медь	цинк	галий	германий	
97,91	101,07	102,906	106,4	107,868 112,41		114,82	118,71	
43 <i>Tc</i>	44 <i>Ru</i>	45 <i>Rh</i>	46 <i>Pd</i>	47 <i>Ag</i>	48 <i>Cd</i>	49 <i>In</i>	50 <i>Sn</i>	
технеций	рутений	родий	палладий	серебро	кадмий	индий	р олово ф	

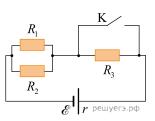
- 1) ${}_{25}^{55}$ Mn 2) ${}_{26}^{56}$ Fe 3) ${}_{28}^{59}$ Ni 4) ${}_{27}^{59}$ Co 5) ${}_{30}^{65}$ Zn
- 19. Лифт начал подниматься с ускорением, модуль которого $a = 1.2 \text{ м/c}^2$. Когда модуль скорости движения достиг V = 2.0 м/с, с потолка кабины лифта оторвался болт. Если высота кабины h =2.4 м, то модуль перемещения Δr болта относительно поверхности Земли за время его движения в лифте равен ... см. Ответ округлите до целых.
- **20.** Два груза массы $m_1 = 0.4$ кг и $m_2 = 0.2$ кг, находящиеся на гладкой горизонтальной поверхности, свя- $ec{F}_{\gamma}$ заны легкой нерастяжимой нитью (см. рис.). Грузы приходят в движение под действием сил, модули которых зависят от времени по закону: $F_1 = At$ и $F_2 = 2At$,

где A = 1,5 H/c. Если модуль сил упругости нити в момент разрыва $F_{\rm vin} = 20$ H, то нить разорвется в момент времени t от начала движения, равный ... c.

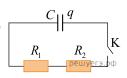
- 21. При выполнении циркового трюка мотоциклист движется по вертикальной цилиндрической стенке радиуса R = 10 м. Если коэффициент трения $\mu = 0,50$, то модуль минимальной скорости υ_{min} движения мотоциклиста равен ... м/с. Ответ округлите до целых.
- 22. В брусок, лежавший на гладкой горизонтальной поверхности и прикрепленный к вертикальному упору легкой пружиной жесткости k = 1,2 кH/м, попадает и застревает в нем пуля массы $m_2 = 0.01$ кг, летевшая со скоростью, модуль которой $\upsilon = 56$ м/с, направленной вдоль оси пружины

(см. рис.). Если максимальное значение силы, которой пружина действует на упор в процессе возникших колебаний, $F_{\text{max}} = 13.7 \text{ H}$, то масса m_1 бруска равна ... кг. Ответ округлите до целого.

23. В вертикально расположенном цилиндре под легкоподвижным поршнем, масса которого m = 4.00 кг, а площадь поперечного сечения S = 20.0 см², содержится идеальный газ (см. рис.). Цилиндр находится в воздухе, атмосферное давление которого $p_0 = 100$ кПа. Если начальная температура газа и объем $T_1 = 270 \text{ K}$ и $V_1 = 3,00$ л соответственно, а при изобарном нагревании изменение его температуры $\Delta T = 180$ K, то работа A, совершенная силой давления газа, равна ... Дж.



- 24. Два одинаковых одноименно заряженных металлических шарика находятся в вакууме на расстоянии r = 10 см друг от друга. Шарики привели в соприкосновение, а затем развели на прежнее расстояние. Если модуль заряда первого шарика до соприкосновения $|q_1| = 1$ нКл, а модуль сил электростатического взаимодействия шариков после соприкосновения F = 3.6 мкH, то модуль заряда $|q_2|$ второго шарика до соприкосновения равен ... **нК**л.
- **25.** Сосуд, содержащий парафин (c = 3.20 кДж/(кг·K), $\lambda = 150 \text{ кДж/кг}$) массы m = 400 г. поставили на электрическую плитку и сразу же начали измерять температуру содержимого сосуда. Измерения прекратили, когда парафин полностью расплавился. В таблице представлены результаты измерений температуры парафина.


Температура <i>T</i> , °С	24,0	34,0	44,0	54,0	54,0		54,0
Время t , с	0,00	25,0	50,0	75,0	100	:	192,3

Если коэффициент полезного действия электроплитки $\eta = 64,0 \%$, то ее мощность P равна ... BT.

26. На рисунке представлена схема электрической цепи, состоящей из источника тока, ключа и трех резисторов, сопротивления которых $R_1=R_2=4,00$ Ом, $R_3=2,00$ Ом. По цепи в течение промежутка времени t=20,0 с проходит электрический ток. Если ЭДС источника тока $\varepsilon=12,0$ В, а его внутреннее сопротивление r=2,00 Ом, то полезная работа $A_{\rm полезн}$. тока на внешнем участке цепи при разомкнутом ключе K равна ... Дж.

- **27.** Квадратная проволочная рамка с длиной стороны a = 4,0 см помещена в однородное магнитное поле, модуль индукции которого B = 450 мТл, так, что линии индукции перпендикулярны плоскости рамки. Если сопротивление проволоки рамки R = 30 мОм, то при исчезновении поля через поперечное сечение проволоки рамки пройдет заряд, модуль |q| которого равен ... **мК**л.
- **28.** В идеальном колебательном контуре, состоящем из последовательно соединенных конденсатора и катушки с индуктивностью $L=20~{\rm M}\Gamma$ н, происходят свободные электромагнитные колебания с периодом T. Если амплитудное значение силы тока в контуре $I_{\rm max}=1~{\rm A}$, то энергия $W_{\rm L}$ магнитного поля катушки в момент времени t=T/8 от момента начала колебаний (подключения катушки к заряженному конденсатору) равна ... мДж.
- **29.** На дне сосуда с жидкостью, абсолютный показатель преломления которой n = 1,50, находится точечный источник света. Если площадь круга, в пределах которого возможен выход лучей от источника через поверхность жидкости, $S = 740 \text{ см}^2$, то высота h жидкости в сосуде равна ... **мм**. Ответ округлите до целых.
- **30.** На рисунке представлена схема электрической цепи, состоящей из конденсатора, ключа и двух резисторов, сопротивления которых $R_1=1$ МОм и $R_2=2$ МОм. Если электрическая емкость конденсатора C=1 н Φ , а его заряд q=6 мкКл, то количество теплоты Q_1 которое выделится в резисторе R_1 при полной разрядке конденсатора после замыкания ключа K, равно ... мDж.

